

Photovoltaic Systems Design A Ridiculously Short Introduction & Future Outlook.

Dr Rami Ghannam – <u>rami.ghannam@glasgow.ac.uk</u> School of Engineering, University of Glasgow University Avenue, G12 8QQ.

About Me

 Lead the Engineering Interactive Devices (EnD) Group at Glasgow University.

- Scotland Chair of the IEEE Education Society.
- I≣T
- Chair of IET's Pedagogy in Engineering and Technology.

#iLRN

Chair of UK:iLRN Chapter

I'm interested in <u>designing</u> <u>interactive</u> technologies that have a <u>measurable</u> impact on the way we <u>learn</u>.

Research Themes

improving the design and delivery of our louis using technology.

Sensing & Signal Processing

Our work has focussed on hand and ever gesture recognition.

Why Energy?

Why Solar?

0.02% of global energy demand!!

The PN Junction

Two types of semiconducting materials are required: an n-type and a p-type semiconductor.

The process of "doping" is used to create *n* and *p* materials, which have excess electrons or holes.

The boundary between the two types of semiconductors is known as the PN junction.

Types of Solar Cells

Crystalline Solar Cells

Mono-crystalline

Poly-crystalline

- Colour = Dark
 blue/black
- Efficiency = 16-19%
- Thickness = 0.2-0.3mm
- Size = 4-8" (10x10cm 15x15cm)

- Colour = blue
- Efficiency = 14-17%
- Thickness = 0.2 0.3mm
- Size = 4-8" (10x10cm 21x21cm)

Thin Film Solar Cells

Examples include:

- Cadmium Telluride (CdTe).
- Amorphous silicon (a-Si).
- Copper Indium Gallium Selenide (CIGS).

Materials are highly absorptive. Therefore, a small layer is sufficient (1-5 microns).

Thin Film cells are not restricted to any size or shape.

Can be deposited on any substrate.

Can be connected monolithically during coating process.

Principles

Photovoltaics R. Ghannam Image from: Ghannam, R. et al. (2019) Artificial intelligence for photovoltaic systems. (doi:10.1007/978-981-13-6151-7_6)

Ideal vs Practical Solar Cells

Image from: Ghannam, R. et al. (2019) Artificial intelligence for photovoltaic systems. (doi:10.1007/978-981-13-6151-7_6)

SPICE Solar Cell Model

G = Irradiance values $(100W/m^2, 500W/m^2, ... etc)$

 I_L

Photovoltaics R. Ghannam

University of Glasgow

SPICE Solar Cell Model

SPICE Solar Cell Model

Effect of Illumination

V

Effect of Temperature

 $R_s = 1\mu\Omega,$ $R_{sh} = 10k\Omega.$ Temperature varied from 25^0C (black line), to 60^0C (red line).

As temperature increases the open circuit voltage decreases since the band gap of the intrinsic semiconductor shrinks.

PV Device Modelling

Photovoltaics R. Ghannam University of Glasgow

PV Device Modelling

PV Device Modelling

19

PV System Types

Concentrated PV Systems

Energy from Batteries

University of Glasgow

Battery State of Charge (SOC)

The fraction of battery capacity that is available from the battery.

Depth of Discharge (DOD)

The Depth of Discharge (DOD) of a battery determines the fraction of power that has been withdrawn from the battery.

SOC	DOD
100%	0%
75%	25%
50%	50%
25%	75%
0%	100%

The notation to specify battery capacity is written as \underline{Cx} , where x is the time in hours that it takes to discharge the battery. For example, $\underline{C10} = xxx$ means that the battery capacity is xxx when the battery is discharged in 10 hours.

Inverters

A solar inverter, or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

String

Inverters that are wired and connected in series.

Micro

Small inverter for converting DC power from individual panels

Central

For large power plant applications that are >100 kW in size.

Charge Controllers

University of Glasgow

A charger controller, charger regulator or battery regulator limits the rate at which electric current is added to or drawn from electric batteries. It prevents overcharging and may protect against overvoltage, which can reduce battery performance or lifespan, and may pose a safety risk. It may also prevent completely draining ("deep discharging") a battery, or perform controlled discharges, depending on the battery technology, to protect battery life.

Maximum power point tracking (MPPT) charge controllers aim to achieve the maximum possible power from the PV array. Solar cells have a complex relationship between solar irradiation, temperature and total resistance that produces a non-linear output efficiency. It is the purpose of the MPPT system to sample the output of the cells and determine a resistance (load) to obtain maximum power for any given environmental condition.

Combiner Boxes

Combiner boxes are an integral part of many PV installations, serving as the "meeting place" where the wiring from array series strings come together in parallel connections.

PV System Design

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads:

The daily energy use will be: <a>Number of appliances × Power consumption × operating per day >

Example: A house has the following electrical appliance usage: One 18 Watt fluorescent lamp with electronic ballast used 4 hours per day. Two 60 Watt fan used for 2 hours per day. One 75 Watt refrigerator that runs 24 hours per day with compressor run 12 hours and off 12 hours.

Total appliance use = (1x18 W x 4 hr) + (2x60 W x 2 hr) + (1x75 W x 24 x 0.5 hr)

= 1,212 Wh/day

PV System Sizing

The required PV module power is given as:

The number of panels required to provide this power is:

$$N = \frac{P_{PV}}{Panel_{pk}} = \frac{P_{PV}}{\eta_{PV}.A_{PV}.G_t}$$

 η_{pv} is the instantaneous PV generator efficiency, A_{PV} is the area of a single module used in a system (m²), G_t is the global irradiance incident on the titled plane (W/m²) and N is the number of modules.

Battery System Sizing

1. First calculate the daily energy use or load in the system: E_{load}

2. Then calculate E_{Tbat}

$$E_{Tbat} = N_{aut} * \frac{E_{load}}{DOD}$$

with N_{aut} the number of days of autonomy and DOD_{max} the maximum depthof-discharge (DOD) of the batteries

3. Divide by system voltage to obtain Ahr_{Tbat}

4. Then divide by battery capacity to obtain N_{bat} in parallel

5. Number of batteries in series obtained from system voltage

What if we could design PV systems... differently?

Background

Why Extended Reality for Climate Change?

Experiment

Results

Results + Experiments

Results

AR/VR/XR Work

Current Work

Home Applicant Information

REEDA WINTER SCHOOL

The American University in Cairo

Organised By

rami.ghannam@glasgow.ac.uk

Thank you!

References

- 1. Abdellatif, S., Kirah, K., Ghannam, R., Khalil, A.S.G. and Anis, W., 2015. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures. *Applied optics*, *54*(17), pp.5534-5541.
- 2. Escher, W., Michel, B., Paredes, S. and Ghannam, R., Egypt Nanotechnology Center and International Business Machines Corp, 2016. *Photovoltaic thermal hybrid systems and method of operation thereof.* U.S. Patent 9,437,766.
- 3. Abdellatif, S., Kirah, K., Ghannam, R., Khalil, A.S.G. and Anis, W., 2018, February. Comprehensive study of various light trapping techniques used for sandwiched thin film solar cell structures. In *Physics, simulation, and photonic engineering of photovoltaic devices VII* (Vol. 10527, p. 1052715). International Society for Optics and Photonics.
- 4. Michel, B., Moll, N. and Ghannam, R., Egypt Nanotechnology Center and International Business Machines Corp, 2018. *Light-reflecting grating structure for photovoltaic devices*. U.S. Patent 9,985,147.
- 5. Abdellatif, S.O., Kirah, K., Ghannam, R., Khalil, A. and Anis, W., 2016. Modelling Various Solar Cells Materials Using Lorentzian-Drude Coefficients. *International Journal of Recent Contributions from Engineering, Science & IT (iJES)*, *4*(4), pp.63-67.
- 6. Ghannam, R., Kussmann, M., Wolf, A., Khalil, A.S. and Imran, M.A., 2019. Solar energy educational programme for sustainable development in Egypt. *Global Journal of Engineering Education*, *21*(2).
- 7. Ghannam, R., Klaine, P.V. and Imran, M., 2019. Artificial Intelligence for Photovoltaic Systems. In *Solar Photovoltaic Power Plants* (pp. 121-142). Springer, Singapore.
- Wahba, M.A., Ashour, A.S. and Ghannam, R., 2020. Prediction of harvestable energy for self-powered wearable healthcare devices: Filling a gap. *IEEE Access*, *8*, pp.170336-170354.
 Photovoltaics

R. Ghannam