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• Lead the Engineering Interactive Devices 
(EnD) Group at Glasgow University.

• Scotland Chair of the IEEE Education 
Society.

• Chair of IET’s Pedagogy in Engineering 
and Technology.

• Chair of UK:iLRN Chapter

• I’m interested in designing interactive
technologies that have a measurable
impact on the way we learn.
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Why Energy?

Our Energy Consumption …
How much resource is available?

Natural Gas: 214 TW

Petroleum: 240 TW

Coal: 560 TW

Uranium: 240 TW

World consumption: 
~ 20 TW/yr

Wind: 72 TW/yr

Hydro: 4-5 TW/yr

• We consume around 20 TW
(10!"#) of power each year. • We have a number of resources to satisfy these 

needs.

• Around 20 % of that power is 
consumed by the US.
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Why Solar?

Solar Energy Resource

Natural Gas: 214 TW

Petroleum: 240 TW

Coal: 560 TW

Uranium: 240 TW

Wind: 72 TW/yr

Hydro: 4-5 TW/yr

Sun=89,000 TW/yr
0.02% of global energy demand!!

World consumption: 
~ 20 TW/yr
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Solar Cells are made from semiconducting 
materials such as Silicon. 

Two types of semiconducting materials are 
required: an n-type and a p-type semiconductor.

The process of “doping” is used to create n and p
materials, which have excess electrons or holes.

The boundary between the two types of 
semiconductors is known as the PN junction.
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Cells 

Crystalline Noncrystalline

Mono

Poly CdTe

DSSC (OPV)a-Si

CIGS
HYBRID

Multi

Types of Solar Cells
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Mono-crystalline

- Colour = Dark 
blue/black

- Efficiency = 16-19%

- Thickness = 0.2-0.3mm

- Size = 4-8” (10x10cm –
15x15cm)

Poly-crystalline

- Colour = blue

- Efficiency = 14-17%

- Thickness = 0.2-
0.3mm

- Size = 4-8” (10x10cm –
21x21cm)

Crystalline Solar Cells
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Examples include:

l Cadmium Telluride (CdTe).

l Amorphous silicon (a-Si).

l Copper Indium Gallium Selenide (CIGS).

Materials are highly absorptive. Therefore, a 
small layer is sufficient (1-5 microns).

Thin Film cells are not restricted to any size or 
shape.

Can be deposited on any substrate.

Can be connected monolithically during coating 
process.

Thin Film Solar Cells
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Image from: Ghannam, R. et al. (2019) Artificial intelligence 

for photovoltaic systems. (doi:10.1007/978-981-13-6151-

7_6)

Principles
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Image from: Ghannam, R. et al. (2019) Artificial intelligence for photovoltaic systems. 

(doi:10.1007/978-981-13-6151-7_6)

Ideal vs Practical Solar Cells
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G-device which is a voltage-
controlled current source

!! =
#"#$
1000'

G = Irradiance values (100(/*$, 500(/*$, …etc)

!! ,"%

,"

Subcircuit Elements

Circuit Elements

SPICE Solar Cell Model
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R

C

Node (0)

Node (1) Node (2)

RC - Circuit

Node (0)

Node (1) Node (2)

Resistor Syntax : rxx node_a node_b {value}
Capacitor Syntax : cxx   node_a node_b {value}
Pulse V. Source : vxx node+  node- pulse ( 

initial_value pulse_value delay 
risetime falltime pulse_length
period)

Transient analysis: ….
Postprocess : .probe
Plot results : .plot tran {variable1} {variable2}
End file : .end

SPICE Solar Cell Model



Photovoltaics
R. Ghannam

14

R

C

Node (3)

* rc.lib
.subckt rc 12 11 10 params: r=1 c=1
r1 11 12 {r}
c1 12 10 {c}
.ends rc

R

C

Node (0)

Node (1)
Node (2)

Subcircuit 1 Subcircuit 2

* learning_subckt.cir
.include rc.lib
xrc1 2 1 0 rc params: r=1k c=1n
xrc2 3 2 0 rc params: r=10k c=10 n

vin 1 0 pulse (0 5 0 1 u 1 u 10 u 20 u)
.tran 0.1 u 40 u
.probe
.plot tran v(1) v(2) v(3)
.end

SPICE Solar Cell Model
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Effect of Illumination

I

V

Ideal solar cell with area=126.6 %&! '"# =
34.3&+/%&!, '$ = 10 .+/%&!Solar Cell

Light

Short Circuit 
Current Load 

Connected

Open Circuit 
Voltage
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," = 1-Ω, 
,"% = 10/Ω. 
Temperature 
varied from 
25&1 (black 
line), to 60&1
(red line). 

As temperature
increases the
open circuit
voltage
decreases since
the band gap of
the intrinsic
semiconductor
shrinks.

25$0
50$0
60$0

V

I

Effect of Temperature
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PV Device Modelling

17
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PV Device Modelling

18
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PV Device Modelling

19(2021) Simulation of crystalline silicon photovoltaic cells for 
wearable applications. IEEE Access, 9, pp. 20868-
20877. (doi: 10.1109/ACCESS.2021.3050431)

(2020) Self-powered implantable medical devices: photovoltaic 
energy harvesting review. Advanced Healthcare Materials, 9(17), 
2000779. (doi: 10.1002/adhm.202000779)

(2022) On-chip photovoltaic cell for energy-autonomous 
implantable devices, Under Review IEEE TED.

http://eprints.gla.ac.uk/226964/
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Access.html
http://dx.doi.org/10.1109/ACCESS.2021.3050431
http://eprints.gla.ac.uk/220309/
http://eprints.gla.ac.uk/view/journal_volume/Advanced_Healthcare_Materials.html
http://dx.doi.org/10.1002/adhm.202000779
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PV Systems

Stand Alone Grid Connected

With Storage Hybrid System

Home Appliances + Diesel Generator

Small Systems

AC Standalone

DC Standalone

+ Wind Turbine

+ Cogeneration

Directly Connected

PV System Types
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Concentrated PV Systems
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Battery State of Charge (SOC)
The fraction of battery capacity that
is available from the battery.

Depth of Discharge (DOD)
The Depth of Discharge (DOD) of
a battery determines the fraction of
power that has been withdrawn
from the battery.

The notation to specify battery capacity is written as Cx, where x is the time in hours
that it takes to discharge the battery. For example, C10 = xxx means that the battery
capacity is xxx when the battery is discharged in 10 hours.

SOC DOD

100% 0%

75% 25%

50% 50%

25% 75%

0% 100%

Energy from Batteries
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String

Inverters that are wired and connected in  
series.

Micro

Small inverter for converting DC power 
from individual panels

Central

For large power plant applications that 
are >100 kW in size.

A solar inverter, or PV inverter, converts the variable direct current (DC) output of
a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can
be fed into a commercial electrical grid or used by a local, off-grid electrical network.

Inverters
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A charger controller, charger regulator or battery
regulator limits the rate at which electric current is added
to or drawn from electric batteries. It prevents
overcharging and may protect against overvoltage,
which can reduce battery performance or lifespan, and
may pose a safety risk. It may also prevent completely
draining ("deep discharging") a battery, or perform
controlled discharges, depending on the battery
technology, to protect battery life.

Maximum power point tracking (MPPT) charge
controllers aim to achieve the maximum possible power
from the PV array. Solar cells have a complex
relationship between solar irradiation, temperature and
total resistance that produces a non-linear output
efficiency. It is the purpose of the MPPT system to
sample the output of the cells and determine a resistance
(load) to obtain maximum power for any given
environmental condition.

Charge Controllers
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Combiner boxes are an integral
part of many PV installations,
serving as the “meeting place”
where the wiring from array series
strings come together in parallel
connections.

Combiner Boxes
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The first step in designing a solar PV
system is to find out the total power
and energy consumption of all loads:

The daily energy use will be:
<Number of  appliances × Power consumption × operating per day >

Example: A house has the following electrical appliance usage:
One 18 Watt fluorescent lamp with electronic ballast used 4 hours per day. Two 60 
Watt fan used for 2 hours per day. One 75 Watt refrigerator that runs 24 hours per 
day with compressor run 12 hours and off 12 hours.

Total appliance use = (1x18 W x 4 hr) + (2x60 W x 2 hr) + (1x75 W x 24 x 0.5 hr)
= 1,212 Wh/day

PV System Design
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The required PV module power is given as:

!"#"$%& = !()*+% × !-./ × !0%1 × !*)$ $  
The number of panels required to provide this power is:

ηpv is the instantaneous PV generator efficiency, APV is the area of a
single module used in a system (m2), Gt is the global irradiance incident
on the titled plane (W/m2) and N is the number of modules.

! = !!"
!"#$%#$

= !!"
&!".(!".)%

!!" =
#$%& ∗ ℎ)

*#$#%&' ∗ +()*+,
3'()%* is the 
pk sun hours*

PV System Sizing
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1. First calculate the daily energy use or load in the system: !!"#$
2. Then calculate *!"#$

5. Number of batteries in series obtained from system voltage

3. Divide by system voltage to obtain +ℎ-!"#$

4. Then divide by battery capacity to obtain ."#$ in parallel

Battery System Sizing

with Naut the number of days of autonomy and DODmax the maximum depth-
of-discharge (DOD) of the batteries

!&'() = #(*) ∗
!+,(-
%&%
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What if we could design PV systems…
…. differently?
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Why Extended Reality for Climate Change?

Background
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Experiment
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Results
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Results + Experiments
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Results
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AR/VR/XR Work
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Current Work
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Thank you!

rami.ghannam@glasgow.ac.uk
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